Abstract

ABSTRACTIn the present paper, we have studied numerically the directed coflow stream effects on mean and turbulent flow properties of a turbulent plane wall jet in forced convection emerging into a directed coflow stream. The system of equations governing the studied configuration is solved with a finite difference scheme using a staggered grid for numerical stability, not uniform in the two directions of the flow. The modified version of the first-order low Reynolds number k–ϵ turbulence model is used and compared to existing experimental findings. It is found that predicted results are in satisfactory agreement with the experimental data and that the wall jet fluid decays faster in presence of a directed coflow stream. Results show also that the increase of coflow deviation angles causes an increase of the growth rates of the dynamic and thermal half-width of the jet and enhances the turbulent mixing. It is found that the longitudinal development of normalised forms of the jet characteristics parameters at different directed coflow velocity ratios can be reasonably well collapsed onto universal trends through the use of momentum length scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.