Abstract

Recent biological research has sought to understand how biochemical signaling pathways, such as the mitogen-activated protein kinase (MAPK) family, influence the migration of a population of cells during wound healing. Fisher's Equation has been used extensively to model experimental wound healing assays due to its simple nature and known traveling wave solutions. This partial differential equation with independent variables of time and space cannot account for the effects of biochemical activity on wound healing, however. To this end, we derive a structured Fisher's Equation with independent variables of time, space, and biochemical pathway activity level and prove the existence of a self-similar traveling wave solution to this equation. We exhibit that these methods also apply to a general structured reaction-diffusion equation and a chemotaxis equation. We also consider a more complicated model with different phenotypes based on MAPK activation and numerically investigate how various temporal patterns of biochemical activity can lead to increased and decreased rates of population migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.