Abstract

Using the recently developed explicit anisotropic algebraic Reynolds-stress model, calculations were performed to study the stable boundary layer dynamics according to the well-known test case of the GABLS1 (Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study) project, where the Richardson number Ri > 1. The model includes the effect of gravity waves, which allows taking into account the momentum maintenance under strong stability conditions. The model shows good agreement with the results of LES simulation. The study aims at obtaining a much more realistic boundary layer, shallower in depth than in traditional first-order models. The case of a constant surface cooling rate is considered. Some interesting features of the model are related to its deduction based on physical principles. In particular, the use of a larger number of prognostic equations in the model makes it possible to obtain more realistic dynamic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.