Abstract

The objective of this study is to demonstrate computationally the effect of winglet length and cant angle on the performance of a small horizontal-axis wind turbine. The computational study was done using the ANSYS Fluent 15 software for a steady-state flow. Different designs of winglet with different lengths and cant angles were numerically studied and optimized using Artificial Neural Network (ANN). The winglet length was changed from 1% to 7% of the wind turbine rotor radius with cant angles from 150 to 900. The parameters of the wind turbine performance, which are power coefficient and thrust force coefficient were investigated for different winglet configurations. This was carried out from cut-in wind speed (3.12 m/s) to wind speed (12 m/s). It demonstrated that, there were noticeable enhancements in power and thrust coefficients in the presence of winglet. The best improvement in the performance was achieved when winglet length was 6.32% and cant angle 48.30. At this case, the percentage increase in power coefficient equals to the percentage increase in thrust coefficient which was 8.787%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call