Abstract

Following the analogy of radio frequency slot antenna and its complementary dipole, we propose the implementation of a slot nanoantenna (SNA) in the optical frequency range. Using finite-difference time-domain (FDTD) method, we investigate the electromagnetic (EM) properties of a SNA formed in a thin gold film and compare the results with the properties of a gold dipole nanoantenna (DNA) of the same dimension as the slot. It is found that the response of the SNA is very similar to the DNA, like their counterparts in the radio frequency (RF) range. The SNA can enhance the near field intensity of incident field which strongly depends on its feedgap dimension. The resonance of the SNA is influenced by its slot length; for the increasing slot length, resonant frequency decreases whereas the sharpness of resonance increases. Besides, the resonance of the SNA is found sensitive to the thickness of metal film, when the latter is smaller than the skin depth. The effect of polarization of incident field on the EM response of the SNA was examined; the field enhancement is optimum when polarization is parallel to the feedgap. Finally, we calculate the radiation patterns of the DNA and SNA and compare them with those of the RF dipole antenna. The radiation pattern of the SNA is found to be independent of its slot length when excited at resonant frequency. To the best of our knowledge, this is the first study on a slot antenna in the optical frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call