Abstract

A novel flat heat pipe has been developed to assist in meeting the high thermal design requirements in high power microelectronics, power converting systems, laptop computers and spacecraft thermal control systems. Two different prototypes, each measuring 152.4 mm by 25.4 mm were constructed and evaluated experimentally. Sintered copper screen mesh was used as the primary wicking structure, in conjunction with a series of parallel wires, which formed liquid arteries. Water was selected as the working fluid. Both experimental and analytical investigations were conducted to examine the maximum heat transport capacity and optimize the design parameters of this particular design. The experimental results indicated that the maximum heat transport capacity and heat flux for Prototype 1, which utilized four layers of 100 mesh screen were 112 W and 17.4W/cm2, respectively, in the horizontal position. For Prototype 2, which utilized six layers of 150 mesh screen, these values were 123 W and 19.1W/cm2, respectively. The experimental results were in good agreement with the theoretical predictions for a mesh compact coefficient of C=1.15.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.