Abstract

This paper is concerned with the existence of solutions for a new boundary value problem of nonlinear coupled (k,ψ)–Hilfer fractional differential equations subject to coupled (k,ψ)–Riemann–Liouville fractional integral boundary conditions. We prove two existence results by applying the Leray–Schauder alternative, and Krasnosel’skiĭ’s fixed-point theorem under different criteria, while the third result, concerning the uniqueness of solutions for the given problem, relies on the Banach’s contraction mapping principle. Examples are included for illustrating the abstract results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.