Abstract

By examining the linearly coupled atmospheric and oceanic signals related to interannual variability in sea surface temperatures and upper-air wind fields, a hemispheric-scale ocean–atmosphere teleconnection mode is isolated that is significantly correlated with equatorial Pacific SSTs 12 months later. The interannual component of this teleconnection mode is related to a basin-scale dipole in the upper-air wind fields stretching across the extratropical Pacific, with additional anomalies extending from the eastern tropical Pacific over North America and into the Atlantic basin. In addition, it is related to variability in the SST field with warm anomalies found over the tropical/subtropical western Pacific as well as the equatorial eastern Pacific; also, there are related cold anomalies over the extratropical central North Pacific that extend down into the central subtropical/tropical Pacific. Diagnostic studies investigating the ocean–atmosphere structure for this mode of variability indicate that the large-scale variations in the upper-air circulation patterns are associated with anomalous equatorward propagation of transient and stationary wave activity over the North Pacific. In addition, they are characterized by vertical circulation patterns over both the subtropical and extratropical Pacific, which are collocated with variations in surface pressure and wind stress fields over the central subtropical and tropical North Pacific. Previous research has shown that modifications of these two fields are significantly related to the evolution of equatorial Pacific SSTs and may provide the dynamic mechanism whereby the ocean–atmosphere teleconnection mode described here influences the development of the ENSO system. This influence appears to be related to a modification of the basin-scale heat content over the central and eastern tropical Pacific; however, significant discussion is provided concerning alternative hypotheses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.