Abstract

SummaryThis study presents a formulation for field problems using hybrid polygonal finite elements, taking steady state seepage through a porous material as the focus. We make comparisons with a conventional finite element formulation based on a single primary variable, focussing on the advantages of the hybrid formulation in terms of flux field accuracy and extension to convex polygonal shaped elements. For the unconfined case, we adopt a head dependent hydraulic conductivity that does not require remeshing. The performance of the hybrid polygonal element formulation is demonstrated through a series of numerical examples. The results show a sensitivity of the location of the free surface in unconfined seepage to mesh configuration for hybrid quadrilateral meshes with various aspect ratios, but not for hybrid polygonal meshes with various orientations and irregularity. Examination of the free surface location results for several conforming shape function options shows an insensitivity to choice of interpolation function, provided that it conforms with the assumptions in the formulation. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.