Abstract

A hybrid photovoltaic (PV)-biomass system with energy storage options is investigated based on energy and exergy analyses. The hybrid system consists of a photovoltaic system, an electrolyser, and a biomass gasifier, which is integrated with a biomass-based gas turbine. The PV system is accountable for 56% of the annual exergy destruction in the hybrid system, while 38% of the annual exergy destruction occurs in the biomass-gas turbine (GT) system. The overall energy and exergy efficiencies of the hybrid PV-biomass system with energy storage options are 34.8% and 34.1%, respectively. A 29% increase in both energy and exergy efficiencies is reported with an increase in the steam-to-carbon ratio (SC) in the range of 1–3 mol/mol. The related specific carbon dioxide emission reduction is 1441–583 g/kWh. In contrast to SC, an increase in gas turbine inlet temperature results in a negative effect on the overall energy and exergy efficiencies, and it does not make a significant contribution to the reduction in specific carbon dioxide emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.