Abstract

In this study, a hybrid approach based on computational fluid dynamics (CFD) was used to investigate the aerodynamic forces associated with vortex-induced vibration (VIV) in a circular cylinder. The circular cylinder and the flow field were considered as two substructures of a system. Circular cylinder motion was produced in a wind tunnel test of the VIV prior to the numerical simulation; this motion was used as a known cylinder boundary condition and applied to the flow field. The flow field with the known moving boundary condition was then numerically simulated by the ANSYS CFX code. The transient aerodynamic coefficients of the circular cylinder with predetermined motion were obtained from the numerical simulation. To verify the feasibility and accuracy of the proposed hybrid approach and to calculate cylinder vibrations, the transient aerodynamic coefficients were applied to a single degree of freedom (SDOF) model of the circular cylinder. The oscillation responses of the circular cylinder from the calculated (SDOF model) and experimental results were compared, and the results indicate that the hybrid approach accurately simulated the transient aerodynamic coefficients of the circular cylinder. For further comparison, a nonlinear aerodynamic coefficient model based on a nonlinear least square technique was applied to the SDOF model. The nonlinear aerodynamic model can predict well the amplitude and lock-in region of the VIV of the circular cylinder model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call