Abstract

This paper investigates a flux-switching (FS) machine with U-V-array permanent magnet (PM) arrangement, termed UV-FSPM. The key design is to construct parallel magnetic circuit by adopting U-V-array PMs. Based on the parallel magnetic circuit, the operating principle of the UV-FSPM is illustrated. To provide a deeper insight into the torque enhancement mechanism, the analytical model of the UV-FSPM is built by using the general air-gap field modulation theory. It is found that the U-V-array PMs can significantly enhance the dominant working harmonic which effectively contributes to torque enhancement of the investigated UV-FSPM. To reveal the impact of key parameters on torque performances, the parametric optimization of the UV-FSPM is conducted. The electromagnetic performances of three FSPMs are comparatively studied by finite element analysis (FEA). It is proved that the investigated UV-FSPM exhibits the highest torque density and highest PM utilization ratio within the pool. Finally, a prototype of the UV-FSPM is fabricated and tested for verification of the investigated concepts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.