Abstract

A study of an interesting meteorological episode over the Owens Valley, California, USA during the Terrain-Induced Rotor EXperiment was conducted using a recently adapted statistical interpolation method to retrieve wind-velocity vectors from Doppler lidar data. This vector retrieval method has been adapted from radar data assimilation techniques. Results show that the method allows better preservation of local variations in the flow field than other techniques. In addition, a high resolution Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) run is used to understand the large-scale flow within the valley and compared with lidar retrievals. Observations from 1030 UTC to 1230 UTC (0230 local time to 0430 local time) on March 27, 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from COAMPS and other in-situ instrumentation are used to corroborate and complement these observations. The optimal interpolation technique for Doppler lidar data vector retrieval appears well suited for scenarios with complex spatial variations in the flow field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call