Abstract

We report a functional synthetic model for studying the noncovalent networks (NCNs) required for complex protein functions. The model [2]-catenane is self-assembled from dipeptide building blocks and contains an extensive network of hydrogen bonds and aromatic interactions. Perturbations to the catenane cause compensating changes in the NCNs structure and dynamics, resulting in long-distance changes reminiscent of a protein. Key findings include the notion that NCNs require regions of negative cooperativity, or "frustrated" noncovalent interactions, as a source of potential energy for driving the response. We refer to this potential energy as latent free energy and describe a mechanistic and energetic model for responsive systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call