Abstract
Diffraction tomography (DT) is an established imaging technique for reconstructing the complex-valued refractive index distribution of a weakly scattering 3D sample. Due to experimental difficulties associated with the direct measurement of the phase of an optical wavefield, the effectiveness of DT for optical imaging applications has been limited. A theory of intensity diffraction tomography (I-DT) has been proposed to circumvent this phase retrieval problem. In this work, we review the features of I-DT reconstruction theory that are relevant to optical microscopy. Computer-simulation studies are conducted to investigate the performance of reconstruction algorithms for a proposed I-DT microscope. The effects of data noise are assessed, and statistically optimal reconstruction strategies that employ multiple detector planes are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.