Abstract

Bubbles entrained by spilled water at hydroelectric projects increase the concentration of total dissolved gas (TDG), which may lead to gas bubble disease in fish. In this paper, the TDG dynamics downstream of Wells Dam are investigated using a two-phase flow model that accounts for the effect of the bubbles on the flow field. The TDG is calculated with a transport equation in which the source is the bubble/liquid mass transfer, a function of the gas volume fraction and bubble size. The model uses anisotropic turbulence modeling and includes attenuation of normal fluctuation at the free surface to capture the flow field and TDG mixing. The model is validated using velocity and TDG field data. Simulations under two plant operational configurations are performed to gain a better understanding of the effect of spill operations on the production, transport, and mixing of TDG. Model results indicate that concentrated spill releases create surface jets that result in the lowest TDG concentration downstream. On ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.