Abstract

ABSTRACTWe report on our investigation into the use of III-V superlattice structures for thermoelectric (TE) applications. Preliminary review of III-V materials trends indicate that the GaSb/InAs superlattice system should offer one of the best potentials for high thermoelectric performance in the 500K-800K range. MOCVD growth of GaSb/InAs superlattice structures was carried out, and relevant structural, thermal, and electrical characterization has been performed. TEM and XRD results demonstrate a well-ordered superlattice structure. Thermal conductivity measurements reveal a reduction in the room-temperature thermal conductivity of GaSb/InAs superlattices (4.4-10.0 W/m-K), relative to either binary GaSb (32 W/m-K) or InAs (27 W/m-K). Additionally, we have worked to optimize the thermoelectric power factor (α2σ), studying both Se- and Te-doping of the superlattice structures, in an effort to demonstrate optimal thermoelectric performance. Our results demonstrate a maximum ZT of 0.36 at 400K for optimally doped n-type GaSb/InAs superlattice structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.