Abstract

Sonosensitizers play a crucial role in the efficacy of sonodynamic antitumor therapy (SDT) and sonodynamic antimicrobial chemotherapy (SACT), highlighting the necessity for the development of new compounds with good sonodynamic activity. In this study, three novel 3-substituted ciprofloxacin derivatives (CIPD1, CIPD2, and CIPD3) were designed and synthesized. Their sonodynamic activities were evaluated by assessing the damage to bovine serum albumin (BSA) and Escherichia coli (E. coli). Furthermore, the potential mechanism underlying their sonodynamic damage activities was investigated by detecting reactive oxygen species (ROS) under ultrasound irradiation (US). The results demonstrated that all three derivatives exhibited enhanced sonodynamic damage to BSA and E. coli under US, with CIPD1 and CIPD2 showing superior effectiveness compared to CIP. Both the concentrations of derivatives and the duration of ultrasound irradiation were found to significantly impact their sonodynamic effects. All three CIP derivates could be activated to produce ROS following ultrasound irradiation, primarily consisting of 1O2 and ·OH. The levels of ROS production were positively correlated with their sonodynamic activities, potentially explaining the mechanism underlying their sonodynamic damage activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.