Abstract

Abstract Manganese oxides of different structures, especially α-MnO2, have been extensively studied as electrodes for pseudocapacitors. However, the poor stability associated with intercalation of proton has been the main obstacle to their commercial applications. To effectively mitigate this problem, it is necessary to fully understand the energy storage mechanism of the MnO2 phases. In this study, δ phase MnO2 has been synthesized through controllable electroplating on architectural Ga-doped ZnO (GZO) bones, demonstrating a high specific capacitance of 1068 F g−1 and high stability (slight performance drop focus on the first 2000 cycles and then remained relatively constant in the subsequent 13,000 cycles). The charge storage mechanism of the δ-MnO2 coated GZO has been carefully investigated under this extreme reaction condition. Results suggest that the amount of charge stored in the electrode material correlates well with the amount of Na+ inserted into the electrode material from the electrolyte. It is also noted that no spectral features corresponding to H+ insertion were detected during cycling when the sample was probed using in operando Raman spectroscopy. Therefore, for layered δ-MnO2, a charge storage mechanism of Na+ intercalation/deintercalation dominated, accompanied by interlayer spacing expansion/contraction, was proposed. Moreover, theoretical calculations also confirmed that the insertion of Na+ is more energetically favorable than H+ at all sites of the interlayer in δ-MnO2, offering a rational explanation of the proposed mechanism and the observed excellent stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.