Abstract

ABSTRACTIn this study, a biological denitrifying process using a sequencing batch reactor (SBR) was employed to treat reverse osmosis (RO) concentrate with high conductivity produced from a coking wastewater plant. From the results, the average removal efficiencies for chemical oxygen demand, total nitrogen, and nitrate were 79.5%, 90.5%, and 93.1%, respectively. Different microbial communities were identified after sequencing the V1–V3 region of the 16S rRNA gene using the MiSeq platform, and the major bacterial phyla in the SBR system were Proteobacteria and Bacteroidetes. The main microorganisms responsible for denitrification were from the genera Hyphomicrobium, Thauera, Methyloversatilis, and Rhodobacter. Quantitative real-time PCR was used to quantify the absolute levels of denitrifying genes, including narG, nirS, nirK, and nosZ, during the start-up and stable operation of the SBR. The abundances of narG, nirK, and nosZ were lower during stable operation than those in the start-up period. The abundance of nirS at a concentration of 104–105 copies/ng in DNA was much higher than that of nirK, making it the dominant functional gene responsible for nitrite reduction. The higher nitrate removal efficiency suggests that biological denitrification using SBR is an effective technique for treating RO concentrate produced from coking wastewater plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call