Abstract
The internal electric fields of InGaN/GaN-based green-emission LED heterostructures with various numbers of quantum wells in the active region are investigated by electrotransmission spectroscopy. The frequencies of the observed spectral lines are attributed to possible types of interband transitions. An increase in the number of interband transitions of the “quantum well—quantum barrier” type with an increase in the number of quantum wells is found. This is explained by the nonidentical degree of segregation of In atoms in different GaN barriers layers. The strength of internal electric fields in quantum wells is calculated for various values of the bias of the p–n junction using a series of electrotransmission spectra. It is found that the strength of the internal piezoelectric field decreases from 3.20 to 2.82 MV/cm with an increase in the number of quantum wells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.