Abstract

In this research, the laminar flow and heat transfer of kerosene/MWCNT nanofluid in a novel design of a double-layer microchannel under the influence of oscillating heat flux and slip boundary condition have been studied. This research has been investigated in the dimensionless lengths of (λ 1) 1/3, 2/3 and 3/3 and dimensionless slip velocity coefficients ranging from 0.001 to 0.1. The suspension of nanoparticles in kerosene as the base fluid has been studied in Reynolds numbers of 1–100 and volume fractions of 0–8%. The results indicate that, by using novel design of double-layer microchannel in λ 1 = 1/3, the maximum rate of performance evaluation criterion is obtained and by increasing the slip velocity coefficient, the amount of PEC becomes significant. Among the studied cases, in all Reynolds numbers and volume fractions, the dimensionless length of 1/3 has the maximum amount of friction coefficient. Also, by enhancing the volume fraction of nanoparticles, slip velocity coefficient, Reynolds number and significant reduction in thermal resistance of solid wall, Nusselt number enhances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call