Abstract
The paper introduced hydrophilic functional groups on the surface of the MgO desulfurizer to improve its dispersion and hydrophilicity on the basis of reducing the particle size of the MgO desulfurizer to the nanometer level. Mechanical grinding technology was used to improve the traditional two-step method to lay the foundation for its large-scale production. The stability test showed that the ζ potential of the 5 wt % modified MgO desulfurizer was greater than 50 mV with 30 days of storage, and the sedimentation rate was not more than 7%. The dissolution reactivity and kinetics experiments showed that the decrease of particle size and the increase of hydrophilicity and dispersion were conducive to accelerating the dissolution rate of the MgO desulfurizer and reducing the apparent activation energy. Meanwhile, the good dissolution rate of the modified MgO nanofluids prepared by the improved method could reduce the liquid film mass transfer resistance and prolonged the penetration time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.