Abstract

Research reports show that the accuracies of many explicit friction factor models, having different levels of accuracies and complexities, have been improved using genetic algorithm (GA), a global optimization approach. However, the computational cost associated with the use of GA has yet to be discussed. In this study, the parameters of sixteen explicit models for the estimation of friction factor in the turbulent flow regime were optimized using two popular global search methods namely genetic algorithm (GA) and simulated annealing (SA). Based on 1000 interval values of Reynolds number (Re) in the range of and 100 interval values of relative roughness () in the range of , corresponding friction factor (f) data were obtained by solving Colebrook-White equation using Microsoft Excel spreadsheet. These data were then used to modify the parameters of the selected explicit models. Although both GA and SA led to either moderate or significant improvements in the accuracies of the existing friction factor models, SA outperforms the GA. Moreover, the SA requires far less computational time than the GA to complete the corresponding optimization process. It can therefore be concluded that SA is a better global optimizer than GA in the process of finding an improved explicit friction factor model as an alternative to the implicit Colebrook-White equation in the turbulent flow regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.