Abstract
The reflection coefficient phase is investigated for several different artificial magnetic conductors (AMCs) having canonical FSS-type shapes. Three of them are selected, each representing a different class, and fine tuned to exhibit identical resonant frequency. Polarization and angular dependence as well as the effects of losses on these structures are studied. Next, a low-profile inverted L-shape monopole antenna (ILSMA) is placed horizontally above the ground plane. Vertical monopole antenna (VMA) is also placed above them. It is shown that using some of the aforementioned AMCs, the input impedance of both ILSMA and VMA can not only be matched, but also the input impedance bandwidth enhancement as wide as 27% and 35% are obtained, respectively. The VMA study on AMC ground planes which reveals a counter-intuitive phenomenon has not been explored in the literature, previously. It is revealed that the broadband characteristics can also be achieved for smaller size of the AMC ground planes, which enables the antenna to be designed in compact size. It is also illustrated that reflection characteristics of the AMC is not sufficient to evaluate AMC performance when it is used as an antenna ground plane. This is illustrated through extensive simulation and measurement results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.