Abstract

Noncrimp three-dimensional orthogonal carbon weave is a specific type of three-dimensional woven fabric which is expected to have high performance as composite reinforcement. In this paper, two different orthogonal weaves in terms of carbon fiber tow type and binder yarns insertion density are produced, and a comprehensive study on the tensile strength of carbon composite reinforcements is conducted. The fiber volume fraction and mechanical performance are found to be affected by these two weave parameters. The fabric architecture changes due to different binder yarns’ insertion densities, influencing the stress wave propagation by preventing crack growth, thus leading to improve tensile strength of three-dimensional orthogonal reinforcement. Based on experimental weave parameters, a set of numerical compression tests are simulated by using a meso-scale finite element model. The results show that the model can predict the tensile strength of noncrimp three-dimensional orthogonal carbon composite reinforcements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.