Abstract

The present paper reports a computational investigation of potential communication between the lysine tyrosylquinone (LTQ) and copper cofactors within lysyl oxidase (LOX). Various substrates and inhibitors of LOX were docked into the active site in our computer generated model of the enzyme. Conformational changes in the vicinity of the copper site as well as changes in the electrostatic environment were identified. The appearance of a canal-like structure involving tyrosine 35 (TYR35) and glutamine 104 (GLN104) residues was shown to be consistent upon docking of a variety of different compounds. Interactions between LOX and its natural substrate, collagen, were also explored through molecular dynamic simulations. The possibility of communication between the organic and inorganic cofactors in LOX was proposed, aiding the ongoing debate regarding the role of copper in the catalytic mechanism of this important enzyme.

Highlights

  • Lysyl oxidase (LOX) is a copper containing amine oxidase (EC 1.4.3.13) that catalyzes the oxidation of lysine resulting in the formation of peptidyl α-aminoadipic-δ-semialdehyde

  • Based on our computer generated and experimentally validated 3D model of LOX [24], we investigate the activity occurring in LOX following small molecule docking and native substrate molecular dynamics (MD) simulations

  • It is a well-established fact [42] that the catalytic processing of peptidyl amine substrates by LOX consists of a two-step, ping-pong mechanism

Read more

Summary

Introduction

Lysyl oxidase (LOX) is a copper containing amine oxidase (EC 1.4.3.13) that catalyzes the oxidation of lysine resulting in the formation of peptidyl α-aminoadipic-δ-semialdehyde. Once formed, this product can spontaneously condense to form intra- and inter-chain cross-links in connective tissue matrices [1, 2]. Within the LOX structure, two cofactors are of particular interest: a lysine tyrosylquinone (LTQ) and a bound Cu(II) ion. The copper site has been partially characterized and copper was shown to be coordinated with three specific histidines [4], while LTQ was shown to be formed in a self-processing, copper catalyzed reaction between specific sequential tyrosine and lysine residues in the presence of molecular oxygen [5,6,7]. Recent research shows developing evidence that the biological role of LOX may extend far beyond that of the structural maturation of elastin and collagen [8,9,10,11,12], demonstrating connections between LOX activity and cancer cell mobility and tumorgenesis [13,14,15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call