Abstract

AbstractWith the increasing demand for novel devices with optical applications the search for new materials to data store and process becomes a priority. By introducing blends, tailor made properties and low cost give added advantage. Miscibility is an essential requirement for a new material, this research thus involves miscibility studies of poly(4‐(N‐(2‐methacryloyloxyethyl)‐N‐ethylamino)‐4′‐nitroazobenzene)90‐co‐(methyl methacrylate)10, (azobenzene derivative) with polymethyl‐methacrylate (PMMA), polyvinylacetate (PVAc) and polyvinylchloride (PVC) prepared in tetrahydrofuran (THF), and/or dimethylformamide (DMF) and/or dichloromethane (CH2Cl2). The glass transitions, solvent and varying molecular weight effect were investigated, since these all primarily influence the miscibility. THF was found to encourage miscibility at specific compositions of PVAc and PVC blends. However, with CH2Cl2 and DMF immiscibility is encouraged. The Fox–Flory equation was applied to the blends analyzing the PVC blends in DMF as deviations from ideality. Different molecular weights of PMMA were identified as immiscible regardless of solvent. PMMA's lower solubility in THF and CH2Cl2 compared to the azobenzene derivative, displayed the existence of PMMA islands. In all blends the favorable and unfavorable interactions between polymer–solvent–polymer systems are considered. Furthermore, the miscibility effect on increasing the MMA content of the azobenzene derivative was also investigated. Copyright © 2002 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call