Abstract

In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher) than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

Highlights

  • Surface acoustic wave (SAW) devices employ mechanical waves such as Rayleigh waves, shear horizontal waves (SH), SH-acoustic plate mode and flexural plate mode for their device operation.surface acoustic wave (SAW) devices are widely used in telecommunications, sensors and actuator systems

  • We present higher mass loading sensitivity of a SAW sensor employing Sezawa wave mode for its device operation

  • It should be noted that heights of ZnO film (hZnO) = 0.1875 μm is the lowest ZnO thickness considered in the study, further lower thicknesses of ZnO film showed no acoustic wave modes due to low electromechanical coupling between the ZnO film and the Si substrate [12]

Read more

Summary

Introduction

Surface acoustic wave (SAW) devices employ mechanical waves such as Rayleigh waves, shear horizontal waves (SH), SH-acoustic plate mode and flexural plate mode for their device operation. SAW devices are widely used in telecommunications, sensors and actuator systems. These devices consist of metallic interdigital transducers (IDT) fabricated over piezoelectric substrates to excite and receive acoustic waves. SAW devices used in sensor applications usually involve a sensing medium made of a thin film coated over the acoustic path. Mass loading effect caused by the film is one of the principal sensing phenomenons in these types of sensors. In general mass loading of a thin film alters velocity of the acoustic wave as given by the relation shown below:

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.