Abstract

Cooling system of an injection mold is important for the promotion of production rate and the quality of injection plastic components. Conformal cooling channels are newly developed temperature-adjusting method to promote the efficiency of cooling system. They can be made in the injection mold inserts via the method of indirect selective laser sintering combined with traditional powder metallurgy. This work discussed some processes such as thermal transmission, powders removing, and metal melt infiltration during the manufacturing of the mold inserts in detail. The result showed that redundant powders outside of laser-scanned areas might be sintered together with the sintered parts owing to the accumulation of laser energy during sintering process. This was solved by switching the temperature to initial level after one layer had been sintered. A limit length corresponding to some certain power vacuum system was found when the removal of unsintered powders in the cooling channels was carried out. Therefore, some subsidiary channels leading the cooling channels outside were made to help the removal of powders within the cooling channels. Dripping method was adopted during metal melt infiltration process, which was proven to be relevant for maintaining of the final shape of infiltrated inserts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.