Abstract

Corrosion-induced bond degradation of deformed steel rebar in concrete is experimentally investigated with acoustic emission (AE) and 3D laser scan technique. Concrete specimens were fabricated and subjected to direct pullout test after being corroded to different levels. The number and width of cracks present during the corrosion tests and the pull-out tests were recorded. The energy released during the pullout tests were captured with AE probes, and the frequency characteristics was analyzed. After pullout tests, the surface morphology of corroded steel rebars was determined with a 3D laser scanner. A modified bond deterioration model was proposed and the parameters associated with the model were analyzed. Results indicated that two types of AE signals were acquired during pullout tests: concrete cracking in high frequency range of 35 ~ 41 kHz and steel-concrete friction in low frequency range of 3 ~ 15 kHz. The bond strength and the bond-slip characteristics depend upon the level of corrosion as well as the number and width of cracks. The reduction factor of the bond-slip model exponentially decreases as a function of the average cross-sectional area loss and linearly decreases with an increase of the rib area loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call