Abstract

The low-n attenuated phase-shift mask can strongly improve extreme ultraviolet imaging performance; it enhances contrast by mask 3D mitigation and a phase-shift effect while simultaneously reducing the required exposure dose. The latter happens because the low-n mask gives optimum contrast at more open mask bias values than its Ta-based counterpart. Here, we experimentally verify the imaging physics of the low-n mask. We show that optimum exposure latitude (EL) with the low-n mask is obtained at more open mask bias values compared to the Ta-based reference mask. This leads to dose reductions exceeding 30% for pitch 38-nm regular contact holes (CHs). Initial local critical dimension uniformity (LCDU) data for hexagonal CHs pitch 38 and 40 nm show 15% LCDU improvement with the low-n mask compared to the Ta-based reference. A 16-nm dense lines show a substantial EL increase and dose reduction with the low-n mask compared to the Ta-based case; this can be even further improved by combining the novel mask absorber with asymmetric illumination. As the low-n masks studied here have absolute reflectivities in the range 8% to 15%, side-lobe printing should be carefully monitored. Initial experimental data for pitch 120-nm CHs and simulations on P32 metal clips, show no signs of side-lobe printing. Careful monitoring of stochastic side-lobe printing for various use cases is recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.