Abstract

Background: Treatment of combined industrial wastewater from industrial parks is one of the most complex and difficult wastewater treatment processes. Also, the accuracy of biological models for the prediction of the performance of these processes has not been sufficiently evaluated. Therefore, in this study, the International Association on Water Quality (IAWQ(-Activated Sludge Model No. 1 (ASM1) was implemented for the Jey industrial park in Isfahan province, Iran. Methods: The Jey IPWWTP process is a combination of anaerobic and aerobic biological processes. To evaluate the overall performance of IPWWTP, organic compounds, suspended solids, nutrients, attached biomass, and some operating parameters were measured during 6 months. Then, the biokinetic coefficients of aerobic processes were determined using Monod equations. Finally, the aerobic processes were modeled using ASM1 implemented in STOAT software. Results: The values of the biokinetic coefficients K, Y, Ks, Kd, and µmax were calculated as 2.7d- , 0.34 mg VSS/mg COD, 133.36 mg/L COD, 0.03d- , and 0.93d- , respectively. Based on the default coefficients and conditions of the ASM model, the difference between the experiments and model prediction was about 2 to 98%. After calibrating the ASM model, the difference between the experiments and prediction in all parameters was reduced to less than 10%. Conclusion: Investigations showed that the default coefficients and operation conditions of the ASM1 model do not have good predictability for complex industrial wastewaters and the outputs show a low accuracy compared to the experiments. After calibrating the kinetic coefficients and operating conditions, the model performance is acceptable and the predictions show a good agreement with the experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.