Abstract

Land surface temperature (LST) is important in a variety of applications, such as urban thermal environment monitoring and water resource management. In this paper, eleven candidate split-window (SW) algorithms were adapted to Thermal Infrared Sensor-2 (TIRS-2) data of the Landsat 9 satellite for estimating the LST. The simulated dataset produced by extensive radiative transfer modeling and five global atmospheric profile databases was used to determine the SW algorithm coefficients. Ground measurements gathered at Surface Radiation Budget Network sites were used to confirm the efficiency of the SW algorithms after their performance was initially examined using the independent simulation dataset. Five atmospheric profile databases perform similarly in training accuracy under various subranges of total water vapor. The candidate SW algorithms demonstrate superior performance compared to the radiative transfer equation algorithm, exhibiting a reduction in overall bias and RMSE by 1.30 K and 1.0 K, respectively. It is expected to provide guidance for the generation of the Landsat 9 LST using the SW algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.