Abstract

The systematic investigation and risk assessment of dibutyl phthalate (DBP) were performed using an ultrasensitive dual-signal immunoassay in Zhenjiang, Jiangsu Province. In this study, C-dots@H-MnO2 nanohybrid were synthesized and labelled on the secondary antibody to generate fluorometric and colorimetric signals. Attributed to the efficient catalysis of carbon dots (C-dots) and the high C-dots loading of hollow manganese (IV) oxide (H-MnO2), the excellent sensitivity and low detection limits (0.243 and 0.692 μg/L respectively) were produced. Based on the proposed method, 25 water and 119 beverage samples were investigated. DBP was found in all water samples and 65.5% of beverage samples, with the concentrations varying in 16.5–32.1 μg/L and 0–553 μg/L, respectively. In addition, the mean concentration (22.9 μg/L) in waters was decreased significantly compared with that detected in 2016 (43.5 μg/L) by our Lab. For beverages, a similar phenomenon was observed by the measured concentrations from coffee. Furthermore, the potential ecological risks of DBP were evaluated, the results indicated that human activities had caused serious pollution and high risks to the local aquatic ecosystem. On the other hand, the results of health risk assessment suggested that DBP in beverages might not cause obvious side effects to local residents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call