Abstract

High active MgO precursor was prepared by high-temperature spray thermal decomposition method using saturated MgCl2 as raw materials. And high active nano-MgO thin spherical materials were prepared by MgO precursor being calcined at different temperatures after multiple hydration, purification, and filtration. The XRD, TG, DSC and SEM were employed to characterize the phase structure and micro-morphology of spherical materials whose formation mechanism was researched. And its activity (average pore size and surface area) was detected by using BET-BJH of N2 adsorption to get the optimum calcination temperature. The results showed that high active nano-MgO thin spherical material was periclase structure, its surface of nano-flake or rod-like, and thin sphere with diameter of 30∼100 nm and aperture of 10∼60 nm. The aperture was decreased while the surface area, microporous volume and surface activity were increased with preparation process were optimized, for example, calcination temperatures. Nano-MgO thin spherical material with a purity of 99.2 wt% was obtained at 900°C. And BET surface area of nano-sphere reached a maximum value of 31.6 m2/g with nest-like structure of particle uniform dispersion and average aperture of 11.2 nm. Meanwhile, the maximum absorption of N2 was gotten.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.