Abstract

SummaryThis study is focused on the effects of starch gelatinisation on heat exchange in food systems containing four modified starch concentrations (0, 2, 6 and 10%). Viscosity profiles of samples were experimentally measured: the effect of gelatinisation was evident, particularly at 6% and 10%, where the viscosity increased from 0.010 to 70 Pa s and to 1507 Pa s, respectively. The heat exchange rate showed a decrease with the increasing of starch concentration, and the effects were observed until 6%. Four Computational Fluid Dynamics (CFD) models were also developed, experimentally validated (RMSE < 1.5 °C) and used to study the heat exchange. Velocity profiles showed that the convective flows slowed down from 2.5 to 0 mms−1 after the gelatinisation. Finally, the effects on the slowest heating/cooling zone (SHZ/SCZ) location in the CFD models were studied: at 0% and 2%, the SHZ settled 15 and 80 mm from the bottom of jars in heating and cooling phase, respectively. At 6% and 10%, before the starch gelatinisation phase, the SHZ was located in a similar position of the 0% and 2% while when the gelatinisation occurred the SHZ slightly moved towards the geometric centre (50 mm) as for an only‐conductive product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.