Abstract

AbstractApple Glomerella leaf spot (GLS) is a severe fungal disease that damages apple leaves during the summer in China. Breeding new apple varieties that are resistant to the disease is considered the best way of controlling GLS. Fine mapping and tightly linked marker are critically essential for the preselection of resistant seedlings. In this study, a population of 207 F1 individuals derived from a cross between ‘Golden Delicious’ and ‘Fuji’ was used to construct a fine simple sequence repeat (SSR)‐based genetic linkage map. The position of Rgls, a locus responsible for resistance to GLS, was identified on apple linkage group (LG) 15 using SSR markers CH05g05 and CH01d08, which was adapted from a published set of 300 SSR markers that were developed using the bulked segregant analysis (BSA) method. These two SSR markers flanked the gene, and its recombination rate was 8.7% and 23.2%, respectively. A total of 276 newly developed SSR markers around the target region and designed from the genome apple assembly contig of LG15 were screened. Only nine of these were determined to be linked to the Rgls locus. Thus, a total of 11 SSR markers were in linkage with Rgls, and mapped at distances ranging from 0.5 to 33.8 cM. The closest marker to the Rgls locus was S0405127, which showed a genetic distance of approximately 0.5 cM. The first mapping of the gene Rgls was constructed, and the locations of the 11 effective primers in the ‘Golden Delicious’ apple genome sequence were anchored. This result facilitates better understanding of the molecular mechanisms underlying the trait of resistance to GLS and could be used in improving the breeding efficiency of GLS‐resistant apple varieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call