Abstract

On-chip power-rail electrostatic discharge (ESD) protection circuit designed with active ESD detection function is the key role to significantly improve ESD robustness of CMOS integrated circuits (ICs). Four power-rail ESD clamp circuits with different ESD-transient detection circuits were fabricated in a 0.18-mum CMOS process and tested to compare their system-level ESD susceptibility, which are named as power-rail ESD clamp circuits with typical <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">RC</i> -based detection, PMOS feedback, NMOS+PMOS feedback, and cascaded PMOS feedback in this work. During the system-level ESD test, where the ICs in a system have been powered up, the feedback loop used in the power-rail ESD clamp circuits provides the lock function to keep the ESD-clamping NMOS in a ldquolatch-onrdquo state. The latch-on ESD-clamping NMOS, which is often drawn with a larger device dimension to sustain high ESD level, conducts a huge current between the power lines to perform a latchup-like failure after the system-level ESD test. A modified power-rail ESD clamp circuit is proposed to solve this problem. The proposed power-rail ESD clamp circuit can provide high enough chip-level ESD robustness, and without suffering the latchup-like failure during the system-level ESD test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call