Abstract

BackgroundFrom 2007 to 2013, intensive control measures reduced malaria burden by 90 % along the China-Myanmar border. However, despite these measures a P. falciparum malaria outbreak was reported in the Shan Special Region II of Myanmar in June of 2014.MethodsEpidemiological, parasitological and entomological investigations were performed. Dihydroartemisinin piperaquine (DAPQ) was immediately administered to treat parasite positive individuals. Long lasting insecticidal nets (LLIN), indoor residual spraying (IRS) with insecticides and behavior change communication (BCC) were also provided for outbreak control. An embedded efficacy study was conducted evaluating DP. Molecular genotyping via polymerase chain reaction (PCR) was performed on the Kelch gene on chromosome 13.ResultsAll infections were identified as Plasmodium falciparum by RDT and microscopy. Two fatalities resulted from the outbreak. The attack rate was 72.8 % (67/92) and the incidence density rate was 14.2 per 100 person-weeks. The positive rate of rapid diagnostic test (RDT) was 72.2 % (65/90) and microscopically-determine parasite rate 42.2 % (38/90). Adjusted odds ratio (OR) of multivariate logistic regression analysis for aged <15 years, 15–45 years, inappropriate treatment from a private healer and lack of bed nets were 13.51 (95 % confidence interval, 2.21–105.89), 7.75 (1.48–44.97), 3.78 (1.30–46.18) and 3.21(1.21–15.19) respectively. In the six surrounding communities of the outbreak site, positive RDT rate was 1.2 % (4/328) and microscopically-determine parasite rate 0.6 % (2/328). Two light traps collected a total of 110 anopheline mosquitoes including local vectors, An. minimus, An. sinensis and An. maculates. After intensive control, the detection of malaria attacks, parasites and antigen were reduced to zero between July 1 and December 1, 2014. The cure rate of P. falciparum patients at day 42 was 94.3 % (95 % CI, 80.8–99.3 %). The PCR did not detect K13-propeller mutations.ConclusionImported P. falciparum caused the outbreak. Age, seeking inappropriate treatment and lack of bed nets were risk factors for infection during the outbreak. P. falciparum was sensitive to treatment with DAPQ. The integrated measures controlled the outbreak and prevented the spread of P. falciparum effectively. The results of this study indicate that malaria control on the China-Myanmar border, especially among special populations, needs further collaboration between China, Myanmar and international societies.Electronic supplementary materialThe online version of this article (doi:10.1186/s40249-016-0127-8) contains supplementary material, which is available to authorized users.

Highlights

  • From 2007 to 2013, intensive control measures reduced malaria burden by 90 % along the China-Myanmar border

  • P. falciparum was sensitive to treatment with Dihydroartemisinin piperaquine (DAPQ)

  • The results of this study indicate that malaria control on the China-Myanmar border, especially among special populations, needs further collaboration between China, Myanmar and international societies

Read more

Summary

Introduction

From 2007 to 2013, intensive control measures reduced malaria burden by 90 % along the China-Myanmar border. Despite these measures a P. falciparum malaria outbreak was reported in the Shan Special Region II of Myanmar in June of 2014. The malaria target under the Millennium Development Goal 6 has been met, and 55 countries are on track to reduce their malaria burden by 75 %, in line with the World Health Assembly’s target for 2015 [1]. Countries in the Asia Pacific region are making substantial progress towards eliminating malaria [4], with China aiming to eliminate malaria by 2020 [5]. The emergence of P. falciparum partial resistance to artemisinin has been one of the most concerning issues [1, 9,10,11,12,13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call