Abstract
A new approach in multi-objective evolutionary optimization is decomposition. Decomposition is a basic method in old multi-objective optimization which in evolutionary multiobjective optimization, has not been widely used. Using this method, a multi-objective optimization problem is converted into a number of scalar subproblems, and all the subproblems are simultaneously optimized. In this paper, the performance and efficiency of the algorithm MOEA/D (multi-objective evolutionary algorithm based on decomposition) with the performance of two algorithms NSGA-II and MOPSO (evolution optimization methods based on dominance) for solving constrained portfolio optimization in Tehran Stock Exchange, has been compared. Portfolio return and its risk, has been considered as the optimization objectives and CvaR has been considered as a risk measure. The results indicate the high potential of these algorithms for constrained portfolio optimization. Also, the results indicate that the optimization algorithm based on decomposition has lower computational complexity, and Pareto front is more extensive than the other two methods. (Abstract)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.