Abstract

Channel models describe how wireless channel parameters behave in a given scenario, and help evaluate link- and system-level performance. A proper channel model should be able to faithfully reproduce the channel parameters obtained in field measurements and accurately predict the spatial and temporal channel impulse response along with large-scale fading. This paper compares two popular channel models for next generation wireless communications: the 3rd Generation Partnership Project (3GPP) TR 38.900 Release 14 channel model and the statistical spatial channel model NYUSIM developed by New York University (NYU). The two channel models employ different modeling approaches in many aspects, such as the line-of-sight probability, path loss, and clustering methodology. Simulations are performed using the two channel models to analyze the channel eigenvalue distribution and spectral efficiency leveraging the analog/digital hybrid beamforming methods found in the literature. Simulation results show that the 3GPP model produces different eigenvalue and spectral efficiency distributions for mmWave bands, as compared to the outcome from NYUSIM that is based on massive amounts of real-world measured data in New York City. This work shows NYUSIM is more accurate for realistic simulations than 3GPP in urban environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call