Abstract
Introduction. Earthing device electrical substation in modern conditions must meet both the requirements of electrical safety of people and animals, as well as electromagnetic compatibility requirements established her electrical equipment. These requirements are intended to address issues of protection against surges and interference caused by lightning impulse currents and switching. Aim. To investigate the distribution of single-phase short-circuit current in the substation grounding devices. Task. On the basis of the proposed design scheme of substitution substation grounding device, consisting of a substation earthing system and «cable-supported» an algorithm for calculating the resistance of the grounding device substation and distribution of single-phase short-circuit current on the circuit elements. Method. Mathematical modeling and calculation engine. Results. On the basis of calculations and studies analyzed the current distribution of single-phase short-circuit between the substation earthing system and earthing «rope-reliance». Studies carried out for the actual range of variation of the circuit parameters, showed that the earthing resistance substation substantially affects the current distribution in the one-phase short circuit fault. For example, using the graph shows that with increasing resistance grounding system of "rope-supported" the proportion of single-phase short-circuit current flowing from the substation earthing increases, while the proportion of single-phase short-circuit current flowing from the grounding device supports decreases and vice versa. In addition, when rationing grounding systems at substations for the touch voltage is necessary to analyze all the possible modes of operation of the network, which is substationed. Conclusion. The results obtained are recommended to take into account in the design of grounding systems at substations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.