Abstract

The ITER in-vessel coils (IVCs) consist of 27 coils edge localized modes (ELM) and 2 coils vertical stabilization (VS) which are all mounted on the vacuum vessel wall behind the shield modules. The IVCs design and manufacturing work is being conducted in between Institute of Plasma Physics Chinese Academy of Sciences (ASIPP) and Princeton Plasma Physics Laboratory (PPPL). Because the position of ELM and VS coils is close and face to the plasma, the IVCs must undergo a severe environment, such as the high dose of radiation and high operation temperature, thus the conventional electrical insulation materials cannot be used. And the technology of “Stainless Steel Jacketed Mineral Insulated Conductor” (SSMIC) is deemed as the best choice to provide the necessary radiation resistance and compatibility strength in ITER's vacuum vessel. While mineral insulated conductor technology is not new, and is similar to the mineral insulated cable used in industrial. Some difficulties still need to be solved, such as searching for the proper raw-materials to make sure that the conductor have the properties of high current carrying capability, the necessary radiation resistance, the proper strength, at the same time, it must be come true in manufacture technology. This paper described the analysis of the materials for VS and ELM coil conductor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.