Abstract

AbstractElectron fluxes in Earth's radiation belts are significantly affected by their resonant interaction with whistler‐mode waves. This wave‐particle interaction often occurs via first cyclotron resonance and, when intense and nonlinear, can accelerate subrelativistic electrons to relativistic energies while also scattering them into the atmospheric loss cone. Here, we model Electron Losses and Fields INvestgation’s (ELFIN) low‐altitude satellite measurements of precipitating electron spectra with a wave‐electron interaction model to infer the profiles of whistler‐mode intensity along magnetic latitude assuming realistic waveforms and statistical models of plasma density. We then compare these profiles with a wave power spatial distribution along field lines from an empirical model. We find that this empirical model is consistent with observations of subrelativistic (<200 keV) electron precipitation events, but deviates significantly for relativistic (>200 keV) electron precipitation events at all MLTs, especially on the nightside. This may be due to the sparse coverage of wave measurements at mid‐to‐high latitudes which causes statistically averaged wave power to be likely underestimated in current empirical wave models. As a result, this discrepancy suggests that intense waves likely do propagate to higher latitudes, although further investigation is required to quantify how well this high‐latitude population can account for the observed relativistic electron precipitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.