Abstract
Abstract The occurrence of the M w 6.0 South Napa California earthquake, on 24 August 2014 at 03:20 a.m. local time, triggered discussion in the seismological community about the level of damage associated with such a moderate‐magnitude event and about the geometry and orientation of the causative fault. In addition, coulomb static stress change mapping does not seem to be able to fully explain near‐source aftershock distribution. Here, we find clear evidence of a north‐northwest source directivity from the analysis of the spatial distribution of peak ground motion. The area of the highest values of the estimated peak dynamic strain field, computed accounting for fault extent and source directivity, agrees with the near‐source aftershock distribution. This might suggest that, in addition to coulomb static stress change, dynamic strain also contributed to the triggering of near‐source Napa earthquake aftershocks. The approach used here might be useful to identify areas likely prone to aftershock occurrence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Bulletin of the Seismological Society of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.