Abstract
Hyaluronan (HA) is a naturally occurring glycosaminoglycan widely researched for its use as a biomaterial in tissue engineering, drug delivery, angiogenesis, and ophthalmic surgeries. The mechanical properties of this biomaterial can be altered to a required extent by chemically modifying the pendant reactive groups. However, derivatizing these polymers to a predetermined extent has been the Achilles heel for this process. In this study, we have investigated the factors controlling the derivatization of the carboxyl moieties of HA with amine containing thiol, cystamine dihydrochloride (Cys), via carbodiimide crosslinking chemistry. We used fractional factorial design to screen and identify the significant factor(s) affecting the reaction, and response surface methodology (RSM) to develop a model equation for predicting the degree of thiolation of HA. Also, we analyzed the reaction mechanism for potential side reactions. We observed that N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) (mole ratio with repeat unit of HA) is the significant factor controlling the degree of amidation. The quadratic equations developed from RSM predict the formulation for a desired degree of amidation of HA and percentage of potential side product. Hence, derivatizing HA to a predetermined extent with minimal side product can be achieved using the statistical design of experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.