Abstract

The thermophysical properties and thermal performance of water- and ethylene-glycol-based nanofluids containing and CuO nanoparticles were examined. Nanofluids were prepared at four concentrations (1- 4 vol%) using an electric mixer and magnetic stirrer, and the thermophysical properties were measured. Surfactants were used to improve stability. The transient hot-wire method (KD2-Pro device), Dynamic Light Scattering (DLS), and Ostwald viscometer (ASTM D445-06) were used to measure the resulting thermal conductivity coefficient, nanoparticle diameter, and nanofluid viscosity, respectively. The experiments were carried out in the 20 to 50 °C temperature range. Adding 1 wt% sodium dodecyl sulfate (SDS) to the CuO–water and the same amount of sodium dodecylbenzene sulfonate (SDBS) to the –water nanofluid were found to stabilize them for 20 and 22 days, respectively. Increasing the nanoparticle volume fraction, raising the temperature, and reducing nanoparticle diameter were found to increase the thermal conductivity coefficient. The density also increases with the nanoparticle volume fraction in the base fluid increasing. Moreover, at the same volume fraction, the CuO–water nanofluid had a higher density than –water. Better base fluid thermal properties amplify the effect on the nanofluid's thermal conductivity coefficient. The actual thermal conductivity coefficient was determined by comparing model predictions of the coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call