Abstract

Thermal stability in a stockpile of reactive materials is analyzed in this article. The combustion process is modelled in a long cylindrical pipe that is assumed to lose heat to the surrounding environment by convection and radiation. The study of effects of different kinetic parameters embedded on the governing differential equation, makes it easier to investigate the complicated combustion process. The combustion process results with nonlinear molecular interactions and as a result it is not easy to solve the differential equation exactly, and therefore the numerical approach by using the Finite Difference Method (FDM) is applied. The numerical solutions are depicted graphically for each parameter’s effect on the temperature of the system. In general, the results indicate that kinetic parameters like the reaction rate promote the exothermic chemical reaction process by increasing the temperature profiles, whilst kinetic parameters such as the order of the reaction show the tendency to retard the combustion process by lowering the temperature of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.