Abstract

The Z-scan technique is a nonlinear optical method that has found applications in characterizing various materials, particularly those exhibiting nonlinear optical response (NLOR). This study applies the continuous wave (CW) Z-scan technique to examine the NLOR in terms of the nonlinear optical phase shifts (ΔΦ0 ) exhibited by the ccfDNA extracted from blood plasma samples collected from a group constituting 30 cancer-diagnosed patients and another group constituting 30 non-diagnosed individuals. The cancer group exhibited significantly higher ΔΦ0 versus incident power slopes compared to the non-cancer group (0.34 versus 0.12) providing a clear distinction between the two groups. The receiver operating characteristic (ROC) curve analysis of the results indicates a clear separation between cancer and non-cancer groups, along with a 94% accuracy rate of the data. The Z-scan results are corroborated by spectrophotometric analysis, revealing a consistent trend in the concentration values of ccfDNA samples extracted from both cancerous and non-cancerous samples, measuring 3.24 and 1.41 respectively. Additionally, more sensitive fluorometric analyses of the respective samples demonstrate significantly higher concentrations of ccfDNA in the cancer group, further affirming the correlation with the Z-scan results. The study suggests that the Z-scan technique holds promise as an effective method for cancer detection, potentially contributing to improved oncology diagnosis and prognosis in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call